Challenges and Opportunities for Deep Learning in Remote Sensing: Understanding the World through Earth Observation (1)
.
Session Chair
Francesca Bovolo
,
Fondazione Bruno Kessler
Devis Tuia
,
Wageningen University
Thursday, May 16, 2019 |
08:30 - 10:10 |
Amber 7+8 - Floor 2 |
Details
Challenges and Opportunities for Deep Learning in Remote Sensing: Understanding the World through Earth Observation (1)
Speaker
08:30 - 08:45
Oral Presentation
Combining Deep Learning Methods for Retrieval of Forest Biomass & Structure
Matthieu Molinier, VTT Technical Research Centre Of Finland Ltd, VTT, Finland
Heikki Astola1, Matti Mõttus1
1VTT Technical Research Centre Of Finland Ltd, VTT, Finland
1VTT Technical Research Centre Of Finland Ltd, VTT, Finland
08:45 - 09:00
Oral Presentation
Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests
Simon Besnard, Max Planck Institute For Biogeochemistry, Jena, Germany; Laboratory Of Geo-information And Remote Sensing, Wageningen University, Wageningen, Netherlands
Nuno Carvalhais1,3, Altaf Arain4, Andrew Black5, Nina Buchmann6, Benjamin Brede2, Jiquan Chen7, Jan G.P.W Clevers2, Loic P. Dutrieux8, Fabian Gans1, Martin Herold2, Martin Jung1, Yoshiko Kosugi9, Alexander Knohl10, Beverly E. Law11, Eugenie Paul-Limoges6, Annalea Lohila12, Lutz Merbold13, Olivier Roupsard14,15, Riccardo Valentini16, Sebastian Wolf17, Xudong Zhang18, Markus Reichstein1
1Max Planck Institute For Biogeochemistry, Jena, Germany, 2Laboratory Of Geo-information And Remote Sensing, Wageningen University, Wageningen, Netherlands, 3CENSE, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade NOVA de Lisboa , Caparica, Portugal, 4School of Geography and Earth Sciences and McMaster Center For Climate Change, McMaster University, Hamilton, Ontario L8S 4K1, Canada, 5Faculty of Land and Food Systems, 2357 Main Mall, University of British Columbia, Vancouver V6T 1Z4, Canada, 6ETH Zurich, Department of Environmental Systems Sciences, Zurich, Switzerland, 7Department of Geography, Environment, and Spatial Sciences and Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48824, USA, 8National Commission for the Knowledge and Use of Biodiversity (CONABIO), Mexico City, C.P.14010, Mexico, 9Laboratory of Forest Hydrology, Graduate School of Agriculture, Kyoto University, 606-8502, Japan, 10Faculty of Forest Sciences, University of Goettingen, Bsgenweg 2, 37077 Goettingen, Germany, 11328 Richardson Hall, College of Forestry, Oregon State University, Corvallis, OR 97331-5752, USA, 12Finnish Meteorological Institute, P.O.Box 503, 00101 Helsinki, Finland, 13Mazingira Centre, International Livestock Research Institute (ILRI), PO Box 30709, 00100 Nairobi, Kenya, 14CIRAD, UMR Eco&Sols, LMI IESOL, B.P. 1386 CP 18524, Dakar, Senegal, 15Eco&Sols, University Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France, 16University of Tuscia, Department for Innovation on Biological, Agro-food and Forest Systems (DIBAF), Via S. Camillo de Lellis 4, 01100 Viterbo, Italy, 17ETH Zurich, Department of Environmental Systems Science, Physics of Environmental Systems, Universitaetsstrasse 16, CHN G 35.1 8092 Zurich, Switzerland, 18Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, P.R.China
1Max Planck Institute For Biogeochemistry, Jena, Germany, 2Laboratory Of Geo-information And Remote Sensing, Wageningen University, Wageningen, Netherlands, 3CENSE, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade NOVA de Lisboa , Caparica, Portugal, 4School of Geography and Earth Sciences and McMaster Center For Climate Change, McMaster University, Hamilton, Ontario L8S 4K1, Canada, 5Faculty of Land and Food Systems, 2357 Main Mall, University of British Columbia, Vancouver V6T 1Z4, Canada, 6ETH Zurich, Department of Environmental Systems Sciences, Zurich, Switzerland, 7Department of Geography, Environment, and Spatial Sciences and Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48824, USA, 8National Commission for the Knowledge and Use of Biodiversity (CONABIO), Mexico City, C.P.14010, Mexico, 9Laboratory of Forest Hydrology, Graduate School of Agriculture, Kyoto University, 606-8502, Japan, 10Faculty of Forest Sciences, University of Goettingen, Bsgenweg 2, 37077 Goettingen, Germany, 11328 Richardson Hall, College of Forestry, Oregon State University, Corvallis, OR 97331-5752, USA, 12Finnish Meteorological Institute, P.O.Box 503, 00101 Helsinki, Finland, 13Mazingira Centre, International Livestock Research Institute (ILRI), PO Box 30709, 00100 Nairobi, Kenya, 14CIRAD, UMR Eco&Sols, LMI IESOL, B.P. 1386 CP 18524, Dakar, Senegal, 15Eco&Sols, University Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France, 16University of Tuscia, Department for Innovation on Biological, Agro-food and Forest Systems (DIBAF), Via S. Camillo de Lellis 4, 01100 Viterbo, Italy, 17ETH Zurich, Department of Environmental Systems Science, Physics of Environmental Systems, Universitaetsstrasse 16, CHN G 35.1 8092 Zurich, Switzerland, 18Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, P.R.China
09:00 - 09:15
Oral Presentation
Lithological classification using multi-sensor data and Convolutional Neural Networks
Melanie Brandmeier, Esri Deutschland Gmbh, Kranzberg, Germany
Yuanze Chen1,2
1Esri Deutschland Gmbh, Kranzberg, Germany, 2Technische Universität München, Germany
1Esri Deutschland Gmbh, Kranzberg, Germany, 2Technische Universität München, Germany
09:15 - 09:30
Oral Presentation
Deep Learning for Damage Estimation Using High-Resolution UAV Imagery
Ferda Ofli, Qatar Computing Research Institute, Doha, Qatar
Nazia Attari2, Javier Marin3
1Qatar Computing Research Institute, Doha, Qatar, 2Bielefeld University, Bielefeld, Germany, 3Massachusetts Institute of Technology, Cambridge, USA
1Qatar Computing Research Institute, Doha, Qatar, 2Bielefeld University, Bielefeld, Germany, 3Massachusetts Institute of Technology, Cambridge, USA
09:30 - 09:45
Oral Presentation
A Recurrent Neural Network (RNN) Based Approach for Reliable Classification of Land Usage from Satellite Imagery
Prateek Purwar, CSEM SA, Alpnach Dorf, Switzerland
Iason Kastanis1, Savvas Rogotis2, Fotis Chatzipapadopoulos2, Philipp Schmid1
1CSEM SA, Alpnach Dorf, Switzerland, 2NEUROPUBLIC, Piraeus, Greece
1CSEM SA, Alpnach Dorf, Switzerland, 2NEUROPUBLIC, Piraeus, Greece
09:45 - 10:00
Oral Presentation
Deep Learning for Global Local Climate Zones Classification
Xiaoxiang Zhu, German Aerospace Center (DLR) , Wessling, Germany; Technical Universizy Of Munich (TUM), Munich, Germany
Chunping Qiu2, Jingliang Hu1, Yilei Shi2, Lichao Mou2, Michael Schmitt2, Yuanyuan Wang2
1German Aerospace Center (DLR) , Wessling, Germany, 2Technical Universizy Of Munich (TUM), Munich, Germany
1German Aerospace Center (DLR) , Wessling, Germany, 2Technical Universizy Of Munich (TUM), Munich, Germany