Header image

Challenges and Opportunities for Deep Learning in Remote Sensing: Understanding the World through Earth Observation (2)

.

Session Chair

Agenda Item Image
Matthieu Molinier , VTT Technical Research Centre Of Finland Ltd

Xiaoxiang Zhu , DLR/ Technical University of Munich

Thursday, May 16, 2019
10:40 - 12:20
Amber 7+8 - Floor 2

Speaker

10:40 - 10:55
Oral Presentation

Dealing With Weak Labelling and Extremely Unbalanced Data: Training Deep Convolutional Neural Networks to Detect Multi-pixel Ships Using Single-pixel Labels in SAR Images

Stian Normann Anfinsen, UiT Arctic University of Norway, Tromso, Norway

Torgeir Brenn1, Michael Kampffmeyer2, Robert Jenssen2, Lars-Petter Gjovik1, Gunnar Rasmussen1, Tony Bauna1
1Kongsberg Satellite Services, Tromso, Norway, 2UiT Arctic University of Norway, Tromso, Norway

Show Abstract


10:55 - 11:10
Agenda Item Image
Oral Presentation

CONTINUAL LEARNING FOR DENSE LABELING OF REMOTE SENSING IMAGES

Onur TASAR, INRIA, Sophia Antipolis, France

Yuliya TARABALKA1, Pierre ALLIEZ1, Sébastien CLERC2, Alain GIROS3
1INRIA, Sophia Antipolis, France, 2ACRI-ST, Sophia Antipolise, France, 3CNES, Toulouse, France

Show Abstract


11:10 - 11:25
Oral Presentation

Rotation equivariant CNNs for the semantic labeling of remote sensing imagery

Devis Tuia, Wageningen University, Wagenignen, the Netherlands

Diego Marcos1
1Wageningen University, Wagenignen, the Netherlands

Show Abstract


11:25 - 11:40
Agenda Item Image
Oral Presentation

Counting the Uncountable: Deep Demantic Density Estimation From Space

Andres Camilo Rodriguez, ETH Zurich, Zurich, Switzerland

Jan Dirk Wegner1
1ETH Zurich, Zurich, Switzerland

Show Abstract


11:40 - 11:55
Oral Presentation

Deep Features for Change Detection in Multitemporal VHR SAR Images

Sudipan Saha, Fondazione Bruno Kessler, Trento, Italy

Francesca Bovolo1, Lorenzo Bruzzone2
1Fondazione Bruno Kessler, Trento, Italy, 2University of Trento, Trento, Italy

Show Abstract


11:55 - 12:10
Agenda Item Image
Oral Presentation

Data Augmentation Techniques for Deep Learning Based Satellite Image Super-resolution

Moataz Ahmed, School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Malaysia

Tomas Maul1, Tuong Thuy Vu2
1School of Computer Science, University of Nottingham Malaysia, Semenyih, Malaysia, 2School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Malaysia

Show Abstract


loading